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ABSTRACT

In this paper we extend our grasp of statistical theory, duality

theory, and computational convenience to the general linear inequality

situation in K2L (or minimum discrimination information) estimation by

exhibiting it as the limit of a simple one parameter sequence of equality

problems. Only the finite discrete distribution case is treated here.
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INTRODUCTION

Frequently in hypothesis testing or estimation of an "inferential"

distribution (in Akaike's terminology) by the Khin~in-Kullback-Leibler (or

Minimum Discrimination Information) method one has information about the

possible candidate distributions in the form of linear inequalities on

the components of the distribution in addition to equality (moment) con-

straints. In MOFS 1978, Charnes, Cooper, and Seiford (1] developed a convex

programming duality theory for the K2L method with linear inequality

constraints. It is especially incisive and convenient for constraints in

equality (or moment) form which, further, have connections with established

statistical theory as well as the analytic and computational facility of

an unconstrained extremal problem in simple smooth functions.

In this paper we extend our grasp of statistical theory, duality

theory, and computational convenience to the general linear inequality

situation by exhibiting it as the limit of a simple one parameter sequence

of equality problems. We treat only the finite discrete distribution case

here, reserving the general distribution case to a forthcoming paper which

also simplifies the duality theory of the "equality" case for general

distributions as developed by Ben-Tal and Charnes in 12].

INEQUALITY AND APPROXIMATING EQUALITY FORMS

The dual programs for the inequality form as presented in Charnes-

Cooper-Seiford [i] are
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max v( )= 6T n in c

(I) s.t. 6TA' = biT

6T2 T = b2T

6,y > 0
and

(II) infT(z) A l TA 1 z1 + A2 z2  IT 1 2T 2

s.t. -z >0

To obtain the dual programs for our approximating (weighted) equality

form, we employ the procedure in [1]. Thus, consider

(1) K(x,y,6,y) _ El S (cieXi - 6ix1 ) + i 2 (Ecie(Yi/) -yiYi)

where c > 0 for all i and c >0.
i

Minimizing with respect to xi and y1 gives:

(2) x =i = i , i 12n

Hence,

iL ci l(id i2 Yi in (i) K(x,y,6,y)
To decouple, as in [i], we obtain

(4) 6Tbx + YTly b]Tz1 + b2Tz2

and

(5) T 2 [1 ( b 2



when we choose

(6) x = Alz + A2 z2  Z

Thereby, we have the dual problems

max v(6,yE) a, 1 Ei 2 Y ln(Yi

(III) s.t. 6TA1 = bIT

6TA2 + T b 2T

6A ,y b

6 0 ~
and A2 2 2

(IV) inf (z) cA ITe A1z + A z - bITzI - b2Tz2 + C c2T e(z/E)

with z unconstrained

(Note that the ci, id_1 2, may be chosen arbitrarily.)

The duality theory of (III) and (IV) is precisely that of the

equailty case in [I], as may be seen by making the change of variables to

i yi ci ' icl11

Eci, iCI

Our present form is, however, more convenient for our arguments.

We now define

(7.1) f(z) - cTeA  + A 2z2  bITzI -b 2Tz 2 , z2 < 0

IT1A z +A z ITi1 2T 2 2T /:
(7.2) g(z,e) c e 2 b z 2 + c e(z2)

We will then have



Theorem 1:

For some 0 0, inf f(z) exists if and only if inf r(z.c) exists.
z 2 .. 0 z

Further,

lim inf g(z,c) = inf f(z)
E-O z z2 o

Proof:

Consider __g_ It may be written as

(8) (clk)T e A2 _ b2  + 22 cie  , i

(r _ A2 z 2  1 T c1 1
where kr 3 (r 2 and (c k) (c 1 ki, ... , ck).

zi

For z2i > 0 we see that by choosing c small enough we can make

g(z,E) an increasing function in that direction. Thus, in seeking a minimum

we need only consider z2 < 0. For notational simplicity in the following

and "inf" with respect to z shall always also entail z
2  o.

For z < 0 and all E > 0 we have"

(9) f() < g(z,e) '< f(z) + e 2 ciiCI

If inf f(z) exists, then, by (9), inf(z) < g(z,c) so that inf g(z,c) exists

for all e > 0. Further, inf f(z) < inf g(z,c). On the other hand, if

inf g(z,E) exists, then, by (9), inf g(z,E) ' f(z) + ey.2 ci so that in' f(z)
i1I

exists. Further, too, inf g(z,c) - inf f(z) + C E2 C
trgI
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Hence

(10.1) inf f(z) < inf g(z,) Winf f(z) + C 2 1
iCi

and

(10.2) lir inf g(z,e) = inf f(z)

When f(z) has a minimum at z*, again from (9) we can conclude

(11) f(z*) = lim g(z*,E)
E-*O Q.E.D.

So much for the minimization side of the duality. For the K2L

side we have

Theorem 2:

The maximum in problem (I) and, as c - 0, in problem (III) is the

same.

Proof:

For 0 < yi < eci' we have -ci< Yi in- u 0, whereas forTi kc~ /

Yi > eci' Yi in ( > 0. Therefore,

(12) -E Y in i < E c for all yi> 0.

Thus,

(13) V(6,y'c 0~ v(S) + CE c~ < fzW + C 2c
I2 CI

From (13) we conclude
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(14) sup v(6,y,e) < sup v() + c  - inf f(z) + e ciCI2 i iEI 2

But by the theory of (1],

sup v(6,y,c) = max v(6,y,E) = inf g(z,e) > inf f(z) by (10.1). Hence

(15) inf f(z) < max v(6,y,e) < sup v(6) + E E2 c i < inf f(z) + c
EI I 2

Thus letting e - 0, we have

(16) inf f(z) < lir max v(6,y,e) < sup v(6) < inf f(z)
C-O

and

(17) lir max v(6,y,e) = sup v(6) = inf f(z)
E-*O

Q.E.D.
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